Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2x^{2}=-16-12
Tangohia te 12 mai i ngā taha e rua.
-2x^{2}=-28
Tangohia te 12 i te -16, ka -28.
x^{2}=\frac{-28}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}=14
Whakawehea te -28 ki te -2, kia riro ko 14.
x=\sqrt{14} x=-\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
12-2x^{2}+16=0
Me tāpiri te 16 ki ngā taha e rua.
28-2x^{2}=0
Tāpirihia te 12 ki te 16, ka 28.
-2x^{2}+28=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 28}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 0 mō b, me 28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-2\right)\times 28}}{2\left(-2\right)}
Pūrua 0.
x=\frac{0±\sqrt{8\times 28}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{0±\sqrt{224}}{2\left(-2\right)}
Whakareatia 8 ki te 28.
x=\frac{0±4\sqrt{14}}{2\left(-2\right)}
Tuhia te pūtakerua o te 224.
x=\frac{0±4\sqrt{14}}{-4}
Whakareatia 2 ki te -2.
x=-\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{14}}{-4} ina he tāpiri te ±.
x=\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{14}}{-4} ina he tango te ±.
x=-\sqrt{14} x=\sqrt{14}
Kua oti te whārite te whakatau.