Whakaoti mō x
x\geq -3
Graph
Tohaina
Kua tāruatia ki te papatopenga
12-\frac{4}{5}\times 5x-\frac{4}{5}\left(-15\right)\leq \frac{4}{7}\left(14x+105\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{4}{5} ki te 5x-15.
12-4x-\frac{4}{5}\left(-15\right)\leq \frac{4}{7}\left(14x+105\right)
Me whakakore te 5 me te 5.
12-4x+\frac{-4\left(-15\right)}{5}\leq \frac{4}{7}\left(14x+105\right)
Tuhia te -\frac{4}{5}\left(-15\right) hei hautanga kotahi.
12-4x+\frac{60}{5}\leq \frac{4}{7}\left(14x+105\right)
Whakareatia te -4 ki te -15, ka 60.
12-4x+12\leq \frac{4}{7}\left(14x+105\right)
Whakawehea te 60 ki te 5, kia riro ko 12.
24-4x\leq \frac{4}{7}\left(14x+105\right)
Tāpirihia te 12 ki te 12, ka 24.
24-4x\leq \frac{4}{7}\times 14x+\frac{4}{7}\times 105
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{4}{7} ki te 14x+105.
24-4x\leq \frac{4\times 14}{7}x+\frac{4}{7}\times 105
Tuhia te \frac{4}{7}\times 14 hei hautanga kotahi.
24-4x\leq \frac{56}{7}x+\frac{4}{7}\times 105
Whakareatia te 4 ki te 14, ka 56.
24-4x\leq 8x+\frac{4}{7}\times 105
Whakawehea te 56 ki te 7, kia riro ko 8.
24-4x\leq 8x+\frac{4\times 105}{7}
Tuhia te \frac{4}{7}\times 105 hei hautanga kotahi.
24-4x\leq 8x+\frac{420}{7}
Whakareatia te 4 ki te 105, ka 420.
24-4x\leq 8x+60
Whakawehea te 420 ki te 7, kia riro ko 60.
24-4x-8x\leq 60
Tangohia te 8x mai i ngā taha e rua.
24-12x\leq 60
Pahekotia te -4x me -8x, ka -12x.
-12x\leq 60-24
Tangohia te 24 mai i ngā taha e rua.
-12x\leq 36
Tangohia te 24 i te 60, ka 36.
x\geq \frac{36}{-12}
Whakawehea ngā taha e rua ki te -12. I te mea he tōraro a -12, ka huri te ahunga koreōrite.
x\geq -3
Whakawehea te 36 ki te -12, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}