Whakaoti mō x
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
432\left(\frac{3x}{4}-\frac{x}{3}\right)-648\left(\frac{7}{9}x-\frac{5}{6}x\right)=36x-180
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3,9,6.
432\left(\frac{3\times 3x}{12}-\frac{4x}{12}\right)-648\left(\frac{7}{9}x-\frac{5}{6}x\right)=36x-180
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 3 ko 12. Whakareatia \frac{3x}{4} ki te \frac{3}{3}. Whakareatia \frac{x}{3} ki te \frac{4}{4}.
432\times \frac{3\times 3x-4x}{12}-648\left(\frac{7}{9}x-\frac{5}{6}x\right)=36x-180
Tā te mea he rite te tauraro o \frac{3\times 3x}{12} me \frac{4x}{12}, me tango rāua mā te tango i ō raua taurunga.
432\times \frac{9x-4x}{12}-648\left(\frac{7}{9}x-\frac{5}{6}x\right)=36x-180
Mahia ngā whakarea i roto o 3\times 3x-4x.
432\times \frac{5x}{12}-648\left(\frac{7}{9}x-\frac{5}{6}x\right)=36x-180
Whakakotahitia ngā kupu rite i 9x-4x.
36\times 5x-648\left(\frac{7}{9}x-\frac{5}{6}x\right)=36x-180
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 432 me te 12.
36\times 5x-648\left(-\frac{1}{18}\right)x=36x-180
Pahekotia te \frac{7}{9}x me -\frac{5}{6}x, ka -\frac{1}{18}x.
36\times 5x-\frac{648\left(-1\right)}{18}x=36x-180
Tuhia te 648\left(-\frac{1}{18}\right) hei hautanga kotahi.
36\times 5x-\frac{-648}{18}x=36x-180
Whakareatia te 648 ki te -1, ka -648.
36\times 5x-\left(-36x\right)=36x-180
Whakawehea te -648 ki te 18, kia riro ko -36.
36\times 5x+36x=36x-180
Ko te tauaro o -36x ko 36x.
180x+36x=36x-180
Whakareatia te 36 ki te 5, ka 180.
216x=36x-180
Pahekotia te 180x me 36x, ka 216x.
216x-36x=-180
Tangohia te 36x mai i ngā taha e rua.
180x=-180
Pahekotia te 216x me -36x, ka 180x.
x=\frac{-180}{180}
Whakawehea ngā taha e rua ki te 180.
x=-1
Whakawehea te -180 ki te 180, kia riro ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}