Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-1 ab=12\left(-6\right)=-72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 12x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Tātaihia te tapeke mō ia takirua.
a=-9 b=8
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(12x^{2}-9x\right)+\left(8x-6\right)
Tuhia anō te 12x^{2}-x-6 hei \left(12x^{2}-9x\right)+\left(8x-6\right).
3x\left(4x-3\right)+2\left(4x-3\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(4x-3\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 4x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
12x^{2}-x-6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 12\left(-6\right)}}{2\times 12}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-48\left(-6\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 12}
Whakareatia -48 ki te -6.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 12}
Tāpiri 1 ki te 288.
x=\frac{-\left(-1\right)±17}{2\times 12}
Tuhia te pūtakerua o te 289.
x=\frac{1±17}{2\times 12}
Ko te tauaro o -1 ko 1.
x=\frac{1±17}{24}
Whakareatia 2 ki te 12.
x=\frac{18}{24}
Nā, me whakaoti te whārite x=\frac{1±17}{24} ina he tāpiri te ±. Tāpiri 1 ki te 17.
x=\frac{3}{4}
Whakahekea te hautanga \frac{18}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{16}{24}
Nā, me whakaoti te whārite x=\frac{1±17}{24} ina he tango te ±. Tango 17 mai i 1.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-16}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
12x^{2}-x-6=12\left(x-\frac{3}{4}\right)\left(x-\left(-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{4} mō te x_{1} me te -\frac{2}{3} mō te x_{2}.
12x^{2}-x-6=12\left(x-\frac{3}{4}\right)\left(x+\frac{2}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
12x^{2}-x-6=12\times \frac{4x-3}{4}\left(x+\frac{2}{3}\right)
Tango \frac{3}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}-x-6=12\times \frac{4x-3}{4}\times \frac{3x+2}{3}
Tāpiri \frac{2}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}-x-6=12\times \frac{\left(4x-3\right)\left(3x+2\right)}{4\times 3}
Whakareatia \frac{4x-3}{4} ki te \frac{3x+2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}-x-6=12\times \frac{\left(4x-3\right)\left(3x+2\right)}{12}
Whakareatia 4 ki te 3.
12x^{2}-x-6=\left(4x-3\right)\left(3x+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 12 me te 12.