Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}=16
Me tāpiri te 16 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{16}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
12x^{2}-16=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-16\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 0 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-16\right)}}{2\times 12}
Pūrua 0.
x=\frac{0±\sqrt{-48\left(-16\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{0±\sqrt{768}}{2\times 12}
Whakareatia -48 ki te -16.
x=\frac{0±16\sqrt{3}}{2\times 12}
Tuhia te pūtakerua o te 768.
x=\frac{0±16\sqrt{3}}{24}
Whakareatia 2 ki te 12.
x=\frac{2\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±16\sqrt{3}}{24} ina he tāpiri te ±.
x=-\frac{2\sqrt{3}}{3}
Nā, me whakaoti te whārite x=\frac{0±16\sqrt{3}}{24} ina he tango te ±.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
Kua oti te whārite te whakatau.