Whakaoti mō x
x\in \left(-\infty,-\frac{\sqrt{141}}{2}+6\right)\cup \left(\frac{\sqrt{141}}{2}+6,\infty\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x^{2}-144x+9>0
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
12x^{2}-144x+9=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-144\right)±\sqrt{\left(-144\right)^{2}-4\times 12\times 9}}{2\times 12}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 12 mō te a, te -144 mō te b, me te 9 mō te c i te ture pūrua.
x=\frac{144±12\sqrt{141}}{24}
Mahia ngā tātaitai.
x=\frac{\sqrt{141}}{2}+6 x=-\frac{\sqrt{141}}{2}+6
Whakaotia te whārite x=\frac{144±12\sqrt{141}}{24} ina he tōrunga te ±, ina he tōraro te ±.
12\left(x-\left(\frac{\sqrt{141}}{2}+6\right)\right)\left(x-\left(-\frac{\sqrt{141}}{2}+6\right)\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\left(\frac{\sqrt{141}}{2}+6\right)<0 x-\left(-\frac{\sqrt{141}}{2}+6\right)<0
Kia tōrunga te otinga, me tōraro tahi te x-\left(\frac{\sqrt{141}}{2}+6\right) me te x-\left(-\frac{\sqrt{141}}{2}+6\right), me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te x-\left(\frac{\sqrt{141}}{2}+6\right) me te x-\left(-\frac{\sqrt{141}}{2}+6\right).
x<-\frac{\sqrt{141}}{2}+6
Te otinga e whakaea i ngā koreōrite e rua ko x<-\frac{\sqrt{141}}{2}+6.
x-\left(-\frac{\sqrt{141}}{2}+6\right)>0 x-\left(\frac{\sqrt{141}}{2}+6\right)>0
Whakaarohia te tauira ina he tōrunga tahi te x-\left(\frac{\sqrt{141}}{2}+6\right) me te x-\left(-\frac{\sqrt{141}}{2}+6\right).
x>\frac{\sqrt{141}}{2}+6
Te otinga e whakaea i ngā koreōrite e rua ko x>\frac{\sqrt{141}}{2}+6.
x<-\frac{\sqrt{141}}{2}+6\text{; }x>\frac{\sqrt{141}}{2}+6
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}