Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4\left(3x^{2}+20x+25\right)
Tauwehea te 4.
a+b=20 ab=3\times 25=75
Whakaarohia te 3x^{2}+20x+25. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,75 3,25 5,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 75.
1+75=76 3+25=28 5+15=20
Tātaihia te tapeke mō ia takirua.
a=5 b=15
Ko te otinga te takirua ka hoatu i te tapeke 20.
\left(3x^{2}+5x\right)+\left(15x+25\right)
Tuhia anō te 3x^{2}+20x+25 hei \left(3x^{2}+5x\right)+\left(15x+25\right).
x\left(3x+5\right)+5\left(3x+5\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(3x+5\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi 3x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
4\left(3x+5\right)\left(x+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
12x^{2}+80x+100=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-80±\sqrt{80^{2}-4\times 12\times 100}}{2\times 12}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-80±\sqrt{6400-4\times 12\times 100}}{2\times 12}
Pūrua 80.
x=\frac{-80±\sqrt{6400-48\times 100}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-80±\sqrt{6400-4800}}{2\times 12}
Whakareatia -48 ki te 100.
x=\frac{-80±\sqrt{1600}}{2\times 12}
Tāpiri 6400 ki te -4800.
x=\frac{-80±40}{2\times 12}
Tuhia te pūtakerua o te 1600.
x=\frac{-80±40}{24}
Whakareatia 2 ki te 12.
x=-\frac{40}{24}
Nā, me whakaoti te whārite x=\frac{-80±40}{24} ina he tāpiri te ±. Tāpiri -80 ki te 40.
x=-\frac{5}{3}
Whakahekea te hautanga \frac{-40}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=-\frac{120}{24}
Nā, me whakaoti te whārite x=\frac{-80±40}{24} ina he tango te ±. Tango 40 mai i -80.
x=-5
Whakawehe -120 ki te 24.
12x^{2}+80x+100=12\left(x-\left(-\frac{5}{3}\right)\right)\left(x-\left(-5\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{3} mō te x_{1} me te -5 mō te x_{2}.
12x^{2}+80x+100=12\left(x+\frac{5}{3}\right)\left(x+5\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
12x^{2}+80x+100=12\times \frac{3x+5}{3}\left(x+5\right)
Tāpiri \frac{5}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
12x^{2}+80x+100=4\left(3x+5\right)\left(x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 12 me te 3.