Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(12x+3\right)=0
Tauwehea te x.
x=0 x=-\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te x=0 me te 12x+3=0.
12x^{2}+3x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 3 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\times 12}
Tuhia te pūtakerua o te 3^{2}.
x=\frac{-3±3}{24}
Whakareatia 2 ki te 12.
x=\frac{0}{24}
Nā, me whakaoti te whārite x=\frac{-3±3}{24} ina he tāpiri te ±. Tāpiri -3 ki te 3.
x=0
Whakawehe 0 ki te 24.
x=-\frac{6}{24}
Nā, me whakaoti te whārite x=\frac{-3±3}{24} ina he tango te ±. Tango 3 mai i -3.
x=-\frac{1}{4}
Whakahekea te hautanga \frac{-6}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=0 x=-\frac{1}{4}
Kua oti te whārite te whakatau.
12x^{2}+3x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{12x^{2}+3x}{12}=\frac{0}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{3}{12}x=\frac{0}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+\frac{1}{4}x=\frac{0}{12}
Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{4}x=0
Whakawehe 0 ki te 12.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\left(\frac{1}{8}\right)^{2}
Whakawehea te \frac{1}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{8}. Nā, tāpiria te pūrua o te \frac{1}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{64}
Pūruatia \frac{1}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{8}\right)^{2}=\frac{1}{64}
Tauwehea x^{2}+\frac{1}{4}x+\frac{1}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{8}=\frac{1}{8} x+\frac{1}{8}=-\frac{1}{8}
Whakarūnātia.
x=0 x=-\frac{1}{4}
Me tango \frac{1}{8} mai i ngā taha e rua o te whārite.