Whakaoti mō x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+12x+9=0
Whakawehea ngā taha e rua ki te 3.
a+b=12 ab=4\times 9=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(4x^{2}+6x\right)+\left(6x+9\right)
Tuhia anō te 4x^{2}+12x+9 hei \left(4x^{2}+6x\right)+\left(6x+9\right).
2x\left(2x+3\right)+3\left(2x+3\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(2x+3\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 2x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2x+3\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-\frac{3}{2}
Hei kimi i te otinga whārite, whakaotia te 2x+3=0.
12x^{2}+36x+27=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-36±\sqrt{36^{2}-4\times 12\times 27}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 36 mō b, me 27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 12\times 27}}{2\times 12}
Pūrua 36.
x=\frac{-36±\sqrt{1296-48\times 27}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-36±\sqrt{1296-1296}}{2\times 12}
Whakareatia -48 ki te 27.
x=\frac{-36±\sqrt{0}}{2\times 12}
Tāpiri 1296 ki te -1296.
x=-\frac{36}{2\times 12}
Tuhia te pūtakerua o te 0.
x=-\frac{36}{24}
Whakareatia 2 ki te 12.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-36}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
12x^{2}+36x+27=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
12x^{2}+36x+27-27=-27
Me tango 27 mai i ngā taha e rua o te whārite.
12x^{2}+36x=-27
Mā te tango i te 27 i a ia ake anō ka toe ko te 0.
\frac{12x^{2}+36x}{12}=-\frac{27}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{36}{12}x=-\frac{27}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+3x=-\frac{27}{12}
Whakawehe 36 ki te 12.
x^{2}+3x=-\frac{9}{4}
Whakahekea te hautanga \frac{-27}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=0
Tāpiri -\frac{9}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{2}\right)^{2}=0
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=0 x+\frac{3}{2}=0
Whakarūnātia.
x=-\frac{3}{2} x=-\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
x=-\frac{3}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}