Whakaoti mō x
x = \frac{\sqrt{2785} - 25}{24} \approx 1.157212467
x=\frac{-\sqrt{2785}-25}{24}\approx -3.2405458
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x^{2}+25x-45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-25±\sqrt{25^{2}-4\times 12\left(-45\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 25 mō b, me -45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 12\left(-45\right)}}{2\times 12}
Pūrua 25.
x=\frac{-25±\sqrt{625-48\left(-45\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-25±\sqrt{625+2160}}{2\times 12}
Whakareatia -48 ki te -45.
x=\frac{-25±\sqrt{2785}}{2\times 12}
Tāpiri 625 ki te 2160.
x=\frac{-25±\sqrt{2785}}{24}
Whakareatia 2 ki te 12.
x=\frac{\sqrt{2785}-25}{24}
Nā, me whakaoti te whārite x=\frac{-25±\sqrt{2785}}{24} ina he tāpiri te ±. Tāpiri -25 ki te \sqrt{2785}.
x=\frac{-\sqrt{2785}-25}{24}
Nā, me whakaoti te whārite x=\frac{-25±\sqrt{2785}}{24} ina he tango te ±. Tango \sqrt{2785} mai i -25.
x=\frac{\sqrt{2785}-25}{24} x=\frac{-\sqrt{2785}-25}{24}
Kua oti te whārite te whakatau.
12x^{2}+25x-45=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
12x^{2}+25x-45-\left(-45\right)=-\left(-45\right)
Me tāpiri 45 ki ngā taha e rua o te whārite.
12x^{2}+25x=-\left(-45\right)
Mā te tango i te -45 i a ia ake anō ka toe ko te 0.
12x^{2}+25x=45
Tango -45 mai i 0.
\frac{12x^{2}+25x}{12}=\frac{45}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{25}{12}x=\frac{45}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+\frac{25}{12}x=\frac{15}{4}
Whakahekea te hautanga \frac{45}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{25}{12}x+\left(\frac{25}{24}\right)^{2}=\frac{15}{4}+\left(\frac{25}{24}\right)^{2}
Whakawehea te \frac{25}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{25}{24}. Nā, tāpiria te pūrua o te \frac{25}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{15}{4}+\frac{625}{576}
Pūruatia \frac{25}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{25}{12}x+\frac{625}{576}=\frac{2785}{576}
Tāpiri \frac{15}{4} ki te \frac{625}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{25}{24}\right)^{2}=\frac{2785}{576}
Tauwehea x^{2}+\frac{25}{12}x+\frac{625}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{24}\right)^{2}}=\sqrt{\frac{2785}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{25}{24}=\frac{\sqrt{2785}}{24} x+\frac{25}{24}=-\frac{\sqrt{2785}}{24}
Whakarūnātia.
x=\frac{\sqrt{2785}-25}{24} x=\frac{-\sqrt{2785}-25}{24}
Me tango \frac{25}{24} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}