Whakaoti mō x
x=-\frac{3}{4}=-0.75
x=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=13 ab=12\times 3=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 12x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=4 b=9
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(12x^{2}+4x\right)+\left(9x+3\right)
Tuhia anō te 12x^{2}+13x+3 hei \left(12x^{2}+4x\right)+\left(9x+3\right).
4x\left(3x+1\right)+3\left(3x+1\right)
Tauwehea te 4x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x+1\right)\left(4x+3\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{3} x=-\frac{3}{4}
Hei kimi otinga whārite, me whakaoti te 3x+1=0 me te 4x+3=0.
12x^{2}+13x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-13±\sqrt{13^{2}-4\times 12\times 3}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 13 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 12\times 3}}{2\times 12}
Pūrua 13.
x=\frac{-13±\sqrt{169-48\times 3}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-13±\sqrt{169-144}}{2\times 12}
Whakareatia -48 ki te 3.
x=\frac{-13±\sqrt{25}}{2\times 12}
Tāpiri 169 ki te -144.
x=\frac{-13±5}{2\times 12}
Tuhia te pūtakerua o te 25.
x=\frac{-13±5}{24}
Whakareatia 2 ki te 12.
x=-\frac{8}{24}
Nā, me whakaoti te whārite x=\frac{-13±5}{24} ina he tāpiri te ±. Tāpiri -13 ki te 5.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-8}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=-\frac{18}{24}
Nā, me whakaoti te whārite x=\frac{-13±5}{24} ina he tango te ±. Tango 5 mai i -13.
x=-\frac{3}{4}
Whakahekea te hautanga \frac{-18}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{1}{3} x=-\frac{3}{4}
Kua oti te whārite te whakatau.
12x^{2}+13x+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
12x^{2}+13x+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
12x^{2}+13x=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{12x^{2}+13x}{12}=-\frac{3}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\frac{13}{12}x=-\frac{3}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}+\frac{13}{12}x=-\frac{1}{4}
Whakahekea te hautanga \frac{-3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{13}{12}x+\left(\frac{13}{24}\right)^{2}=-\frac{1}{4}+\left(\frac{13}{24}\right)^{2}
Whakawehea te \frac{13}{12}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{24}. Nā, tāpiria te pūrua o te \frac{13}{24} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{13}{12}x+\frac{169}{576}=-\frac{1}{4}+\frac{169}{576}
Pūruatia \frac{13}{24} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{13}{12}x+\frac{169}{576}=\frac{25}{576}
Tāpiri -\frac{1}{4} ki te \frac{169}{576} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{13}{24}\right)^{2}=\frac{25}{576}
Tauwehea x^{2}+\frac{13}{12}x+\frac{169}{576}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{24}\right)^{2}}=\sqrt{\frac{25}{576}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{13}{24}=\frac{5}{24} x+\frac{13}{24}=-\frac{5}{24}
Whakarūnātia.
x=-\frac{1}{3} x=-\frac{3}{4}
Me tango \frac{13}{24} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}