Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12x^{2}=23-10
Tangohia te 10 mai i ngā taha e rua.
12x^{2}=13
Tangohia te 10 i te 23, ka 13.
x^{2}=\frac{13}{12}
Whakawehea ngā taha e rua ki te 12.
x=\frac{\sqrt{39}}{6} x=-\frac{\sqrt{39}}{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
12x^{2}+10-23=0
Tangohia te 23 mai i ngā taha e rua.
12x^{2}-13=0
Tangohia te 23 i te 10, ka -13.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-13\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 0 mō b, me -13 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-13\right)}}{2\times 12}
Pūrua 0.
x=\frac{0±\sqrt{-48\left(-13\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{0±\sqrt{624}}{2\times 12}
Whakareatia -48 ki te -13.
x=\frac{0±4\sqrt{39}}{2\times 12}
Tuhia te pūtakerua o te 624.
x=\frac{0±4\sqrt{39}}{24}
Whakareatia 2 ki te 12.
x=\frac{\sqrt{39}}{6}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{39}}{24} ina he tāpiri te ±.
x=-\frac{\sqrt{39}}{6}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{39}}{24} ina he tango te ±.
x=\frac{\sqrt{39}}{6} x=-\frac{\sqrt{39}}{6}
Kua oti te whārite te whakatau.