Aromātai
13.5
Tauwehe
\frac{3 ^ {3}}{2} = 13\frac{1}{2} = 13.5
Tohaina
Kua tāruatia ki te papatopenga
12\times 3.375-12\times 1.5^{2}
Tātaihia te 1.5 mā te pū o 3, kia riro ko 3.375.
40.5-12\times 1.5^{2}
Whakareatia te 12 ki te 3.375, ka 40.5.
40.5-12\times 2.25
Tātaihia te 1.5 mā te pū o 2, kia riro ko 2.25.
40.5-27
Whakareatia te 12 ki te 2.25, ka 27.
13.5
Tangohia te 27 i te 40.5, ka 13.5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}