Whakaoti mō x
x=1
x=19
Graph
Tohaina
Kua tāruatia ki te papatopenga
96-12x-\left(8-x\right)x=77
Whakareatia te 12 ki te 8, ka 96.
96-12x-\left(8x-x^{2}\right)=77
Whakamahia te āhuatanga tohatoha hei whakarea te 8-x ki te x.
96-12x-8x-\left(-x^{2}\right)=77
Hei kimi i te tauaro o 8x-x^{2}, kimihia te tauaro o ia taurangi.
96-12x-8x+x^{2}=77
Ko te tauaro o -x^{2} ko x^{2}.
96-20x+x^{2}=77
Pahekotia te -12x me -8x, ka -20x.
96-20x+x^{2}-77=0
Tangohia te 77 mai i ngā taha e rua.
19-20x+x^{2}=0
Tangohia te 77 i te 96, ka 19.
x^{2}-20x+19=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 19}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -20 mō b, me 19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 19}}{2}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400-76}}{2}
Whakareatia -4 ki te 19.
x=\frac{-\left(-20\right)±\sqrt{324}}{2}
Tāpiri 400 ki te -76.
x=\frac{-\left(-20\right)±18}{2}
Tuhia te pūtakerua o te 324.
x=\frac{20±18}{2}
Ko te tauaro o -20 ko 20.
x=\frac{38}{2}
Nā, me whakaoti te whārite x=\frac{20±18}{2} ina he tāpiri te ±. Tāpiri 20 ki te 18.
x=19
Whakawehe 38 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{20±18}{2} ina he tango te ±. Tango 18 mai i 20.
x=1
Whakawehe 2 ki te 2.
x=19 x=1
Kua oti te whārite te whakatau.
96-12x-\left(8-x\right)x=77
Whakareatia te 12 ki te 8, ka 96.
96-12x-\left(8x-x^{2}\right)=77
Whakamahia te āhuatanga tohatoha hei whakarea te 8-x ki te x.
96-12x-8x-\left(-x^{2}\right)=77
Hei kimi i te tauaro o 8x-x^{2}, kimihia te tauaro o ia taurangi.
96-12x-8x+x^{2}=77
Ko te tauaro o -x^{2} ko x^{2}.
96-20x+x^{2}=77
Pahekotia te -12x me -8x, ka -20x.
-20x+x^{2}=77-96
Tangohia te 96 mai i ngā taha e rua.
-20x+x^{2}=-19
Tangohia te 96 i te 77, ka -19.
x^{2}-20x=-19
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}-20x+\left(-10\right)^{2}=-19+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-20x+100=-19+100
Pūrua -10.
x^{2}-20x+100=81
Tāpiri -19 ki te 100.
\left(x-10\right)^{2}=81
Tauwehea x^{2}-20x+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{81}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-10=9 x-10=-9
Whakarūnātia.
x=19 x=1
Me tāpiri 10 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}