Whakaoti mō x
x=6\sqrt{6}\approx 14.696938457
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\sqrt{2}=\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}x
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
12\sqrt{2}=\frac{2\sqrt{3}}{3}x
Ko te pūrua o \sqrt{3} ko 3.
12\sqrt{2}=\frac{2\sqrt{3}x}{3}
Tuhia te \frac{2\sqrt{3}}{3}x hei hautanga kotahi.
\frac{2\sqrt{3}x}{3}=12\sqrt{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2\sqrt{3}x=36\sqrt{2}
Whakareatia ngā taha e rua o te whārite ki te 3.
\frac{2\sqrt{3}x}{2\sqrt{3}}=\frac{36\sqrt{2}}{2\sqrt{3}}
Whakawehea ngā taha e rua ki te 2\sqrt{3}.
x=\frac{36\sqrt{2}}{2\sqrt{3}}
Mā te whakawehe ki te 2\sqrt{3} ka wetekia te whakareanga ki te 2\sqrt{3}.
x=6\sqrt{6}
Whakawehe 36\sqrt{2} ki te 2\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}