Aromātai
\frac{7\sqrt{3}}{6}\approx 2.020725942
Tohaina
Kua tāruatia ki te papatopenga
\frac{12\times \frac{\sqrt{1}}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
\frac{12\times \frac{1}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{12\times \frac{\sqrt{6}}{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{2\sqrt{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 12 me te 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{\sqrt{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{7}{12}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{7}}{\sqrt{12}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{2\sqrt{3}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}}{2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Whakareatia te 2 ki te 3, ka 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{20+1}{2}}
Whakareatia te 10 ki te 2, ka 20.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{21}{2}}
Tāpirihia te 20 ki te 1, ka 21.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{21}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{21}}{\sqrt{2}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{21}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Hei whakarea \sqrt{21} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{6}\sqrt{21}}{3\times 6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Me whakarea te \frac{2\sqrt{6}}{3} ki te \frac{\sqrt{21}}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}\sqrt{21}}{3\times 3}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2}\times \frac{\sqrt{42}}{2}
Me whakarea te \frac{\sqrt{6}\sqrt{21}}{3\times 3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}\sqrt{21}\sqrt{42}}{3\times 3\times 2\times 2}
Me whakarea te \frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2} ki te \frac{\sqrt{42}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{6}\sqrt{21}\sqrt{6}\sqrt{7}}{3\times 3\times 2\times 2}
Tauwehea te 42=6\times 7. Tuhia anō te pūtake rua o te hua \sqrt{6\times 7} hei hua o ngā pūtake rua \sqrt{6}\sqrt{7}.
\frac{6\sqrt{21}\sqrt{7}}{3\times 3\times 2\times 2}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
\frac{6\sqrt{7}\sqrt{3}\sqrt{7}}{3\times 3\times 2\times 2}
Tauwehea te 21=7\times 3. Tuhia anō te pūtake rua o te hua \sqrt{7\times 3} hei hua o ngā pūtake rua \sqrt{7}\sqrt{3}.
\frac{6\times 7\sqrt{3}}{3\times 3\times 2\times 2}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\frac{42\sqrt{3}}{3\times 3\times 2\times 2}
Whakareatia te 6 ki te 7, ka 42.
\frac{42\sqrt{3}}{9\times 2\times 2}
Whakareatia te 3 ki te 3, ka 9.
\frac{42\sqrt{3}}{18\times 2}
Whakareatia te 9 ki te 2, ka 18.
\frac{42\sqrt{3}}{36}
Whakareatia te 18 ki te 2, ka 36.
\frac{7}{6}\sqrt{3}
Whakawehea te 42\sqrt{3} ki te 36, kia riro ko \frac{7}{6}\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}