Aromātai
\frac{365}{348}\approx 1.048850575
Tauwehe
\frac{5 \cdot 73}{2 ^ {2} \cdot 3 \cdot 29} = 1\frac{17}{348} = 1.0488505747126438
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(12\times 6+1\right)\times 5}{6\left(11\times 5+3\right)}
Whakawehe \frac{12\times 6+1}{6} ki te \frac{11\times 5+3}{5} mā te whakarea \frac{12\times 6+1}{6} ki te tau huripoki o \frac{11\times 5+3}{5}.
\frac{\left(72+1\right)\times 5}{6\left(11\times 5+3\right)}
Whakareatia te 12 ki te 6, ka 72.
\frac{73\times 5}{6\left(11\times 5+3\right)}
Tāpirihia te 72 ki te 1, ka 73.
\frac{365}{6\left(11\times 5+3\right)}
Whakareatia te 73 ki te 5, ka 365.
\frac{365}{6\left(55+3\right)}
Whakareatia te 11 ki te 5, ka 55.
\frac{365}{6\times 58}
Tāpirihia te 55 ki te 3, ka 58.
\frac{365}{348}
Whakareatia te 6 ki te 58, ka 348.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}