Aromātai
\frac{253}{24}\approx 10.541666667
Tauwehe
\frac{11 \cdot 23}{2 ^ {3} \cdot 3} = 10\frac{13}{24} = 10.541666666666666
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
12 \frac { 1 } { 4 } + \frac { 1 } { 6 } - 1 \frac { 7 } { 8 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{48+1}{4}+\frac{1}{6}-\frac{1\times 8+7}{8}
Whakareatia te 12 ki te 4, ka 48.
\frac{49}{4}+\frac{1}{6}-\frac{1\times 8+7}{8}
Tāpirihia te 48 ki te 1, ka 49.
\frac{147}{12}+\frac{2}{12}-\frac{1\times 8+7}{8}
Ko te maha noa iti rawa atu o 4 me 6 ko 12. Me tahuri \frac{49}{4} me \frac{1}{6} ki te hautau me te tautūnga 12.
\frac{147+2}{12}-\frac{1\times 8+7}{8}
Tā te mea he rite te tauraro o \frac{147}{12} me \frac{2}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{149}{12}-\frac{1\times 8+7}{8}
Tāpirihia te 147 ki te 2, ka 149.
\frac{149}{12}-\frac{8+7}{8}
Whakareatia te 1 ki te 8, ka 8.
\frac{149}{12}-\frac{15}{8}
Tāpirihia te 8 ki te 7, ka 15.
\frac{298}{24}-\frac{45}{24}
Ko te maha noa iti rawa atu o 12 me 8 ko 24. Me tahuri \frac{149}{12} me \frac{15}{8} ki te hautau me te tautūnga 24.
\frac{298-45}{24}
Tā te mea he rite te tauraro o \frac{298}{24} me \frac{45}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{253}{24}
Tangohia te 45 i te 298, ka 253.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}