Aromātai
\frac{259}{2}=129.5
Tauwehe
\frac{7 \cdot 37}{2} = 129\frac{1}{2} = 129.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{36+1}{3}\times \frac{10\times 4+2}{4}
Whakareatia te 12 ki te 3, ka 36.
\frac{37}{3}\times \frac{10\times 4+2}{4}
Tāpirihia te 36 ki te 1, ka 37.
\frac{37}{3}\times \frac{40+2}{4}
Whakareatia te 10 ki te 4, ka 40.
\frac{37}{3}\times \frac{42}{4}
Tāpirihia te 40 ki te 2, ka 42.
\frac{37}{3}\times \frac{21}{2}
Whakahekea te hautanga \frac{42}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{37\times 21}{3\times 2}
Me whakarea te \frac{37}{3} ki te \frac{21}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{777}{6}
Mahia ngā whakarea i roto i te hautanga \frac{37\times 21}{3\times 2}.
\frac{259}{2}
Whakahekea te hautanga \frac{777}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}