Aromātai
\frac{144}{7}\approx 20.571428571
Tauwehe
\frac{2 ^ {4} \cdot 3 ^ {2}}{7} = 20\frac{4}{7} = 20.571428571428573
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{\frac{4}{12}+\frac{3}{12}}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{1}{3} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{12}{\frac{4+3}{12}}
Tā te mea he rite te tauraro o \frac{4}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{\frac{7}{12}}
Tāpirihia te 4 ki te 3, ka 7.
12\times \frac{12}{7}
Whakawehe 12 ki te \frac{7}{12} mā te whakarea 12 ki te tau huripoki o \frac{7}{12}.
\frac{12\times 12}{7}
Tuhia te 12\times \frac{12}{7} hei hautanga kotahi.
\frac{144}{7}
Whakareatia te 12 ki te 12, ka 144.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}