Aromātai
\frac{217}{10}=21.7
Tauwehe
\frac{7 \cdot 31}{2 \cdot 5} = 21\frac{7}{10} = 21.7
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
12 \div \frac { 3 } { 5 } - ( - 1 \frac { 7 } { 10 } ) =
Tohaina
Kua tāruatia ki te papatopenga
12\times \frac{5}{3}-\left(-\frac{1\times 10+7}{10}\right)
Whakawehe 12 ki te \frac{3}{5} mā te whakarea 12 ki te tau huripoki o \frac{3}{5}.
\frac{12\times 5}{3}-\left(-\frac{1\times 10+7}{10}\right)
Tuhia te 12\times \frac{5}{3} hei hautanga kotahi.
\frac{60}{3}-\left(-\frac{1\times 10+7}{10}\right)
Whakareatia te 12 ki te 5, ka 60.
20-\left(-\frac{1\times 10+7}{10}\right)
Whakawehea te 60 ki te 3, kia riro ko 20.
20-\left(-\frac{10+7}{10}\right)
Whakareatia te 1 ki te 10, ka 10.
20-\left(-\frac{17}{10}\right)
Tāpirihia te 10 ki te 7, ka 17.
20+\frac{17}{10}
Ko te tauaro o -\frac{17}{10} ko \frac{17}{10}.
\frac{200}{10}+\frac{17}{10}
Me tahuri te 20 ki te hautau \frac{200}{10}.
\frac{200+17}{10}
Tā te mea he rite te tauraro o \frac{200}{10} me \frac{17}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{217}{10}
Tāpirihia te 200 ki te 17, ka 217.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}