Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

144-6^{2}=b^{2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
144-36=b^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
108=b^{2}
Tangohia te 36 i te 144, ka 108.
b^{2}=108
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b=6\sqrt{3} b=-6\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
144-6^{2}=b^{2}
Tātaihia te 12 mā te pū o 2, kia riro ko 144.
144-36=b^{2}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
108=b^{2}
Tangohia te 36 i te 144, ka 108.
b^{2}=108
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b^{2}-108=0
Tangohia te 108 mai i ngā taha e rua.
b=\frac{0±\sqrt{0^{2}-4\left(-108\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-108\right)}}{2}
Pūrua 0.
b=\frac{0±\sqrt{432}}{2}
Whakareatia -4 ki te -108.
b=\frac{0±12\sqrt{3}}{2}
Tuhia te pūtakerua o te 432.
b=6\sqrt{3}
Nā, me whakaoti te whārite b=\frac{0±12\sqrt{3}}{2} ina he tāpiri te ±.
b=-6\sqrt{3}
Nā, me whakaoti te whārite b=\frac{0±12\sqrt{3}}{2} ina he tango te ±.
b=6\sqrt{3} b=-6\sqrt{3}
Kua oti te whārite te whakatau.