Whakaoti mō d
d=-\frac{9x^{2}+6x-11}{\left(1-3x\right)^{2}}
x\neq \frac{1}{3}
Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=-\frac{-d+2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{; }x=-\frac{-d-2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{, }&d\neq -1\\x=1\text{, }&d=-1\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=-\frac{-d+2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{; }x=-\frac{-d-2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{, }&d\neq -1\text{ and }d\geq -\frac{3}{2}\\x=1\text{, }&d=-1\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
12=\left(1-3x\right)^{2}d+\left(1+3x\right)\left(1+3x\right)
Whakareatia te 1-3x ki te 1-3x, ka \left(1-3x\right)^{2}.
12=\left(1-3x\right)^{2}d+\left(1+3x\right)^{2}
Whakareatia te 1+3x ki te 1+3x, ka \left(1+3x\right)^{2}.
12=\left(1-6x+9x^{2}\right)d+\left(1+3x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-3x\right)^{2}.
12=d-6xd+9x^{2}d+\left(1+3x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-6x+9x^{2} ki te d.
12=d-6xd+9x^{2}d+1+6x+9x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+3x\right)^{2}.
d-6xd+9x^{2}d+1+6x+9x^{2}=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
d-6xd+9x^{2}d+6x+9x^{2}=12-1
Tangohia te 1 mai i ngā taha e rua.
d-6xd+9x^{2}d+6x+9x^{2}=11
Tangohia te 1 i te 12, ka 11.
d-6xd+9x^{2}d+9x^{2}=11-6x
Tangohia te 6x mai i ngā taha e rua.
d-6xd+9x^{2}d=11-6x-9x^{2}
Tangohia te 9x^{2} mai i ngā taha e rua.
\left(1-6x+9x^{2}\right)d=11-6x-9x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(9x^{2}-6x+1\right)d=11-6x-9x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(9x^{2}-6x+1\right)d}{9x^{2}-6x+1}=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Whakawehea ngā taha e rua ki te 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Mā te whakawehe ki te 1-6x+9x^{2} ka wetekia te whakareanga ki te 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{\left(3x-1\right)^{2}}
Whakawehe 11-6x-9x^{2} ki te 1-6x+9x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}