Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12=\left(1-3x\right)^{2}d+\left(1+3x\right)\left(1+3x\right)
Whakareatia te 1-3x ki te 1-3x, ka \left(1-3x\right)^{2}.
12=\left(1-3x\right)^{2}d+\left(1+3x\right)^{2}
Whakareatia te 1+3x ki te 1+3x, ka \left(1+3x\right)^{2}.
12=\left(1-6x+9x^{2}\right)d+\left(1+3x\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(1-3x\right)^{2}.
12=d-6xd+9x^{2}d+\left(1+3x\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1-6x+9x^{2} ki te d.
12=d-6xd+9x^{2}d+1+6x+9x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+3x\right)^{2}.
d-6xd+9x^{2}d+1+6x+9x^{2}=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
d-6xd+9x^{2}d+6x+9x^{2}=12-1
Tangohia te 1 mai i ngā taha e rua.
d-6xd+9x^{2}d+6x+9x^{2}=11
Tangohia te 1 i te 12, ka 11.
d-6xd+9x^{2}d+9x^{2}=11-6x
Tangohia te 6x mai i ngā taha e rua.
d-6xd+9x^{2}d=11-6x-9x^{2}
Tangohia te 9x^{2} mai i ngā taha e rua.
\left(1-6x+9x^{2}\right)d=11-6x-9x^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(9x^{2}-6x+1\right)d=11-6x-9x^{2}
He hanga arowhānui tō te whārite.
\frac{\left(9x^{2}-6x+1\right)d}{9x^{2}-6x+1}=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Whakawehea ngā taha e rua ki te 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Mā te whakawehe ki te 1-6x+9x^{2} ka wetekia te whakareanga ki te 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{\left(3x-1\right)^{2}}
Whakawehe 11-6x-9x^{2} ki te 1-6x+9x^{2}.