Whakaoti mō x
x=12\sqrt{3}-5\approx 15.784609691
Graph
Tohaina
Kua tāruatia ki te papatopenga
12=\frac{\left(x+5\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{x+5}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
12=\frac{\left(x+5\right)\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
12=\frac{x\sqrt{3}+5\sqrt{3}}{3}
Whakamahia te āhuatanga tohatoha hei whakarea te x+5 ki te \sqrt{3}.
\frac{x\sqrt{3}+5\sqrt{3}}{3}=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\sqrt{3}+5\sqrt{3}=12\times 3
Me whakarea ngā taha e rua ki te 3.
x\sqrt{3}+5\sqrt{3}=36
Whakareatia te 12 ki te 3, ka 36.
x\sqrt{3}=36-5\sqrt{3}
Tangohia te 5\sqrt{3} mai i ngā taha e rua.
\sqrt{3}x=36-5\sqrt{3}
He hanga arowhānui tō te whārite.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{36-5\sqrt{3}}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
x=\frac{36-5\sqrt{3}}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
x=12\sqrt{3}-5
Whakawehe 36-5\sqrt{3} ki te \sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}