Aromātai
\frac{27}{14}\approx 1.928571429
Tauwehe
\frac{3 ^ {3}}{2 \cdot 7} = 1\frac{13}{14} = 1.9285714285714286
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{4+\frac{5}{\frac{8}{4}+\frac{1}{4}}}
Me tahuri te 2 ki te hautau \frac{8}{4}.
\frac{12}{4+\frac{5}{\frac{8+1}{4}}}
Tā te mea he rite te tauraro o \frac{8}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{4+\frac{5}{\frac{9}{4}}}
Tāpirihia te 8 ki te 1, ka 9.
\frac{12}{4+5\times \frac{4}{9}}
Whakawehe 5 ki te \frac{9}{4} mā te whakarea 5 ki te tau huripoki o \frac{9}{4}.
\frac{12}{4+\frac{5\times 4}{9}}
Tuhia te 5\times \frac{4}{9} hei hautanga kotahi.
\frac{12}{4+\frac{20}{9}}
Whakareatia te 5 ki te 4, ka 20.
\frac{12}{\frac{36}{9}+\frac{20}{9}}
Me tahuri te 4 ki te hautau \frac{36}{9}.
\frac{12}{\frac{36+20}{9}}
Tā te mea he rite te tauraro o \frac{36}{9} me \frac{20}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{\frac{56}{9}}
Tāpirihia te 36 ki te 20, ka 56.
12\times \frac{9}{56}
Whakawehe 12 ki te \frac{56}{9} mā te whakarea 12 ki te tau huripoki o \frac{56}{9}.
\frac{12\times 9}{56}
Tuhia te 12\times \frac{9}{56} hei hautanga kotahi.
\frac{108}{56}
Whakareatia te 12 ki te 9, ka 108.
\frac{27}{14}
Whakahekea te hautanga \frac{108}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}