Aromātai
\frac{16}{3}\approx 5.333333333
Tauwehe
\frac{2 ^ {4}}{3} = 5\frac{1}{3} = 5.333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{12\left(\frac{1}{18}-\frac{1}{9}\right)}{\frac{1}{8}-\frac{1}{4}}
Whakawehe 12 ki te \frac{\frac{1}{8}-\frac{1}{4}}{\frac{1}{18}-\frac{1}{9}} mā te whakarea 12 ki te tau huripoki o \frac{\frac{1}{8}-\frac{1}{4}}{\frac{1}{18}-\frac{1}{9}}.
\frac{12\left(\frac{1}{18}-\frac{2}{18}\right)}{\frac{1}{8}-\frac{1}{4}}
Ko te maha noa iti rawa atu o 18 me 9 ko 18. Me tahuri \frac{1}{18} me \frac{1}{9} ki te hautau me te tautūnga 18.
\frac{12\times \frac{1-2}{18}}{\frac{1}{8}-\frac{1}{4}}
Tā te mea he rite te tauraro o \frac{1}{18} me \frac{2}{18}, me tango rāua mā te tango i ō raua taurunga.
\frac{12\left(-\frac{1}{18}\right)}{\frac{1}{8}-\frac{1}{4}}
Tangohia te 2 i te 1, ka -1.
\frac{\frac{12\left(-1\right)}{18}}{\frac{1}{8}-\frac{1}{4}}
Tuhia te 12\left(-\frac{1}{18}\right) hei hautanga kotahi.
\frac{\frac{-12}{18}}{\frac{1}{8}-\frac{1}{4}}
Whakareatia te 12 ki te -1, ka -12.
\frac{-\frac{2}{3}}{\frac{1}{8}-\frac{1}{4}}
Whakahekea te hautanga \frac{-12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{-\frac{2}{3}}{\frac{1}{8}-\frac{2}{8}}
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{1}{8} me \frac{1}{4} ki te hautau me te tautūnga 8.
\frac{-\frac{2}{3}}{\frac{1-2}{8}}
Tā te mea he rite te tauraro o \frac{1}{8} me \frac{2}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{2}{3}}{-\frac{1}{8}}
Tangohia te 2 i te 1, ka -1.
-\frac{2}{3}\left(-8\right)
Whakawehe -\frac{2}{3} ki te -\frac{1}{8} mā te whakarea -\frac{2}{3} ki te tau huripoki o -\frac{1}{8}.
\frac{-2\left(-8\right)}{3}
Tuhia te -\frac{2}{3}\left(-8\right) hei hautanga kotahi.
\frac{16}{3}
Whakareatia te -2 ki te -8, ka 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}