Aromātai
10+2i
Wāhi Tūturu
10
Tohaina
Kua tāruatia ki te papatopenga
12+0-2i\left(-1-i\right)
Whakareatia te 0 ki te 7i, ka 0.
12-2i\left(-1-i\right)
Tāpirihia te 12 ki te 0, ka 12.
12-\left(2i\left(-1\right)+2\left(-1\right)i^{2}\right)
Whakareatia 2i ki te -1-i.
12-\left(2i\left(-1\right)+2\left(-1\right)\left(-1\right)\right)
Hei tōna tikanga, ko te i^{2} ko -1.
12-\left(2-2i\right)
Mahia ngā whakarea i roto o 2i\left(-1\right)+2\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
12-2-2i
Tangohia te 2-2i i te 12 mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
10+2i
Tango 2 mai i 12.
Re(12+0-2i\left(-1-i\right))
Whakareatia te 0 ki te 7i, ka 0.
Re(12-2i\left(-1-i\right))
Tāpirihia te 12 ki te 0, ka 12.
Re(12-\left(2i\left(-1\right)+2\left(-1\right)i^{2}\right))
Whakareatia 2i ki te -1-i.
Re(12-\left(2i\left(-1\right)+2\left(-1\right)\left(-1\right)\right))
Hei tōna tikanga, ko te i^{2} ko -1.
Re(12-\left(2-2i\right))
Mahia ngā whakarea i roto o 2i\left(-1\right)+2\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(12-2-2i)
Tangohia te 2-2i i te 12 mā te tango i ngā wāhi tūturu me ngā wāhi pohewa hāngai.
Re(10+2i)
Tango 2 mai i 12.
10
Ko te wāhi tūturu o 10+2i ko 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}