Whakaoti mō x
x=\frac{\sqrt{2294425328025626}}{5}-9580032\approx 0.000000054
x=-\frac{\sqrt{2294425328025626}}{5}-9580032\approx -19160064.000000052
Graph
Tohaina
Kua tāruatia ki te papatopenga
479001600x+25x^{2}=26
Ko te huarea o 12 ko 479001600.
479001600x+25x^{2}-26=0
Tangohia te 26 mai i ngā taha e rua.
25x^{2}+479001600x-26=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-479001600±\sqrt{479001600^{2}-4\times 25\left(-26\right)}}{2\times 25}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 25 mō a, 479001600 mō b, me -26 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-479001600±\sqrt{229442532802560000-4\times 25\left(-26\right)}}{2\times 25}
Pūrua 479001600.
x=\frac{-479001600±\sqrt{229442532802560000-100\left(-26\right)}}{2\times 25}
Whakareatia -4 ki te 25.
x=\frac{-479001600±\sqrt{229442532802560000+2600}}{2\times 25}
Whakareatia -100 ki te -26.
x=\frac{-479001600±\sqrt{229442532802562600}}{2\times 25}
Tāpiri 229442532802560000 ki te 2600.
x=\frac{-479001600±10\sqrt{2294425328025626}}{2\times 25}
Tuhia te pūtakerua o te 229442532802562600.
x=\frac{-479001600±10\sqrt{2294425328025626}}{50}
Whakareatia 2 ki te 25.
x=\frac{10\sqrt{2294425328025626}-479001600}{50}
Nā, me whakaoti te whārite x=\frac{-479001600±10\sqrt{2294425328025626}}{50} ina he tāpiri te ±. Tāpiri -479001600 ki te 10\sqrt{2294425328025626}.
x=\frac{\sqrt{2294425328025626}}{5}-9580032
Whakawehe -479001600+10\sqrt{2294425328025626} ki te 50.
x=\frac{-10\sqrt{2294425328025626}-479001600}{50}
Nā, me whakaoti te whārite x=\frac{-479001600±10\sqrt{2294425328025626}}{50} ina he tango te ±. Tango 10\sqrt{2294425328025626} mai i -479001600.
x=-\frac{\sqrt{2294425328025626}}{5}-9580032
Whakawehe -479001600-10\sqrt{2294425328025626} ki te 50.
x=\frac{\sqrt{2294425328025626}}{5}-9580032 x=-\frac{\sqrt{2294425328025626}}{5}-9580032
Kua oti te whārite te whakatau.
479001600x+25x^{2}=26
Ko te huarea o 12 ko 479001600.
25x^{2}+479001600x=26
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{25x^{2}+479001600x}{25}=\frac{26}{25}
Whakawehea ngā taha e rua ki te 25.
x^{2}+\frac{479001600}{25}x=\frac{26}{25}
Mā te whakawehe ki te 25 ka wetekia te whakareanga ki te 25.
x^{2}+19160064x=\frac{26}{25}
Whakawehe 479001600 ki te 25.
x^{2}+19160064x+9580032^{2}=\frac{26}{25}+9580032^{2}
Whakawehea te 19160064, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 9580032. Nā, tāpiria te pūrua o te 9580032 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+19160064x+91777013121024=\frac{26}{25}+91777013121024
Pūrua 9580032.
x^{2}+19160064x+91777013121024=\frac{2294425328025626}{25}
Tāpiri \frac{26}{25} ki te 91777013121024.
\left(x+9580032\right)^{2}=\frac{2294425328025626}{25}
Tauwehea x^{2}+19160064x+91777013121024. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9580032\right)^{2}}=\sqrt{\frac{2294425328025626}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+9580032=\frac{\sqrt{2294425328025626}}{5} x+9580032=-\frac{\sqrt{2294425328025626}}{5}
Whakarūnātia.
x=\frac{\sqrt{2294425328025626}}{5}-9580032 x=-\frac{\sqrt{2294425328025626}}{5}-9580032
Me tango 9580032 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}