115 = x \left( 1+3. { 10 }^{ -3 } .50 \right)
Whakaoti mō x
x = \frac{230000}{2003} = 114\frac{1658}{2003} \approx 114.827758362
Graph
Tohaina
Kua tāruatia ki te papatopenga
115=x\left(1+3\times \frac{1}{1000}\times 0.5\right)
Tātaihia te 10 mā te pū o -3, kia riro ko \frac{1}{1000}.
115=x\left(1+\frac{3}{1000}\times 0.5\right)
Whakareatia te 3 ki te \frac{1}{1000}, ka \frac{3}{1000}.
115=x\left(1+\frac{3}{2000}\right)
Whakareatia te \frac{3}{1000} ki te 0.5, ka \frac{3}{2000}.
115=x\times \frac{2003}{2000}
Tāpirihia te 1 ki te \frac{3}{2000}, ka \frac{2003}{2000}.
x\times \frac{2003}{2000}=115
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=115\times \frac{2000}{2003}
Me whakarea ngā taha e rua ki te \frac{2000}{2003}, te tau utu o \frac{2003}{2000}.
x=\frac{230000}{2003}
Whakareatia te 115 ki te \frac{2000}{2003}, ka \frac{230000}{2003}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}