Whakaoti mō x
x=\frac{1}{10}=0.1
Graph
Tohaina
Kua tāruatia ki te papatopenga
112x+64\times \frac{1}{2}-192x=24
Whakamahia te āhuatanga tohatoha hei whakarea te 64 ki te \frac{1}{2}-3x.
112x+\frac{64}{2}-192x=24
Whakareatia te 64 ki te \frac{1}{2}, ka \frac{64}{2}.
112x+32-192x=24
Whakawehea te 64 ki te 2, kia riro ko 32.
-80x+32=24
Pahekotia te 112x me -192x, ka -80x.
-80x=24-32
Tangohia te 32 mai i ngā taha e rua.
-80x=-8
Tangohia te 32 i te 24, ka -8.
x=\frac{-8}{-80}
Whakawehea ngā taha e rua ki te -80.
x=\frac{1}{10}
Whakahekea te hautanga \frac{-8}{-80} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}