Aromātai
\frac{91328}{81}\approx 1127.50617284
Tauwehe
\frac{2 ^ {6} \cdot 1427}{3 ^ {4}} = 1127\frac{41}{81} = 1127.5061728395062
Tohaina
Kua tāruatia ki te papatopenga
1125+\frac{3+2}{3}-\frac{2\times 6+5}{6}\left(-\frac{8}{27}\right)
Whakareatia te 1 ki te 3, ka 3.
1125+\frac{5}{3}-\frac{2\times 6+5}{6}\left(-\frac{8}{27}\right)
Tāpirihia te 3 ki te 2, ka 5.
\frac{3375}{3}+\frac{5}{3}-\frac{2\times 6+5}{6}\left(-\frac{8}{27}\right)
Me tahuri te 1125 ki te hautau \frac{3375}{3}.
\frac{3375+5}{3}-\frac{2\times 6+5}{6}\left(-\frac{8}{27}\right)
Tā te mea he rite te tauraro o \frac{3375}{3} me \frac{5}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3380}{3}-\frac{2\times 6+5}{6}\left(-\frac{8}{27}\right)
Tāpirihia te 3375 ki te 5, ka 3380.
\frac{3380}{3}-\frac{12+5}{6}\left(-\frac{8}{27}\right)
Whakareatia te 2 ki te 6, ka 12.
\frac{3380}{3}-\frac{17}{6}\left(-\frac{8}{27}\right)
Tāpirihia te 12 ki te 5, ka 17.
\frac{3380}{3}-\frac{17\left(-8\right)}{6\times 27}
Me whakarea te \frac{17}{6} ki te -\frac{8}{27} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{3380}{3}-\frac{-136}{162}
Mahia ngā whakarea i roto i te hautanga \frac{17\left(-8\right)}{6\times 27}.
\frac{3380}{3}-\left(-\frac{68}{81}\right)
Whakahekea te hautanga \frac{-136}{162} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3380}{3}+\frac{68}{81}
Ko te tauaro o -\frac{68}{81} ko \frac{68}{81}.
\frac{91260}{81}+\frac{68}{81}
Ko te maha noa iti rawa atu o 3 me 81 ko 81. Me tahuri \frac{3380}{3} me \frac{68}{81} ki te hautau me te tautūnga 81.
\frac{91260+68}{81}
Tā te mea he rite te tauraro o \frac{91260}{81} me \frac{68}{81}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{91328}{81}
Tāpirihia te 91260 ki te 68, ka 91328.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}