112 \frac { 1 } { 2 } \% \text { of } 200 m
Aromātai
225m
Whakaroha
225m
Tohaina
Kua tāruatia ki te papatopenga
\frac{112\times 2+1}{2\times 100}\times 200m
Tuhia te \frac{\frac{112\times 2+1}{2}}{100} hei hautanga kotahi.
\frac{224+1}{2\times 100}\times 200m
Whakareatia te 112 ki te 2, ka 224.
\frac{225}{2\times 100}\times 200m
Tāpirihia te 224 ki te 1, ka 225.
\frac{225}{200}\times 200m
Whakareatia te 2 ki te 100, ka 200.
\frac{9}{8}\times 200m
Whakahekea te hautanga \frac{225}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{9\times 200}{8}m
Tuhia te \frac{9}{8}\times 200 hei hautanga kotahi.
\frac{1800}{8}m
Whakareatia te 9 ki te 200, ka 1800.
225m
Whakawehea te 1800 ki te 8, kia riro ko 225.
\frac{112\times 2+1}{2\times 100}\times 200m
Tuhia te \frac{\frac{112\times 2+1}{2}}{100} hei hautanga kotahi.
\frac{224+1}{2\times 100}\times 200m
Whakareatia te 112 ki te 2, ka 224.
\frac{225}{2\times 100}\times 200m
Tāpirihia te 224 ki te 1, ka 225.
\frac{225}{200}\times 200m
Whakareatia te 2 ki te 100, ka 200.
\frac{9}{8}\times 200m
Whakahekea te hautanga \frac{225}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{9\times 200}{8}m
Tuhia te \frac{9}{8}\times 200 hei hautanga kotahi.
\frac{1800}{8}m
Whakareatia te 9 ki te 200, ka 1800.
225m
Whakawehea te 1800 ki te 8, kia riro ko 225.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}