112 \% = \beta ( 12 \% - 4 \% ) + 4 \%
Whakaoti mō β
\beta =\frac{27}{2}=13.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{28}{25}=\beta \left(\frac{12}{100}-\frac{4}{100}\right)+\frac{4}{100}
Whakahekea te hautanga \frac{112}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{28}{25}=\beta \left(\frac{3}{25}-\frac{4}{100}\right)+\frac{4}{100}
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{28}{25}=\beta \left(\frac{3}{25}-\frac{1}{25}\right)+\frac{4}{100}
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{28}{25}=\beta \times \frac{3-1}{25}+\frac{4}{100}
Tā te mea he rite te tauraro o \frac{3}{25} me \frac{1}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{28}{25}=\beta \times \frac{2}{25}+\frac{4}{100}
Tangohia te 1 i te 3, ka 2.
\frac{28}{25}=\beta \times \frac{2}{25}+\frac{1}{25}
Whakahekea te hautanga \frac{4}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\beta \times \frac{2}{25}+\frac{1}{25}=\frac{28}{25}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\beta \times \frac{2}{25}=\frac{28}{25}-\frac{1}{25}
Tangohia te \frac{1}{25} mai i ngā taha e rua.
\beta \times \frac{2}{25}=\frac{28-1}{25}
Tā te mea he rite te tauraro o \frac{28}{25} me \frac{1}{25}, me tango rāua mā te tango i ō raua taurunga.
\beta \times \frac{2}{25}=\frac{27}{25}
Tangohia te 1 i te 28, ka 27.
\beta =\frac{27}{25}\times \frac{25}{2}
Me whakarea ngā taha e rua ki te \frac{25}{2}, te tau utu o \frac{2}{25}.
\beta =\frac{27\times 25}{25\times 2}
Me whakarea te \frac{27}{25} ki te \frac{25}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\beta =\frac{27}{2}
Me whakakore tahi te 25 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}