Whakaoti mō x (complex solution)
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}\approx 0.08+1.726344886i
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}\approx 0.08-1.726344886i
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
112 = 6 x - \frac { 1 } { 2 } \times 75 x ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
112=6x-\frac{75}{2}x^{2}
Whakareatia te \frac{1}{2} ki te 75, ka \frac{75}{2}.
6x-\frac{75}{2}x^{2}=112
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
6x-\frac{75}{2}x^{2}-112=0
Tangohia te 112 mai i ngā taha e rua.
-\frac{75}{2}x^{2}+6x-112=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}-4\left(-\frac{75}{2}\right)\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{75}{2} mō a, 6 mō b, me -112 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-\frac{75}{2}\right)\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
Pūrua 6.
x=\frac{-6±\sqrt{36+150\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
Whakareatia -4 ki te -\frac{75}{2}.
x=\frac{-6±\sqrt{36-16800}}{2\left(-\frac{75}{2}\right)}
Whakareatia 150 ki te -112.
x=\frac{-6±\sqrt{-16764}}{2\left(-\frac{75}{2}\right)}
Tāpiri 36 ki te -16800.
x=\frac{-6±2\sqrt{4191}i}{2\left(-\frac{75}{2}\right)}
Tuhia te pūtakerua o te -16764.
x=\frac{-6±2\sqrt{4191}i}{-75}
Whakareatia 2 ki te -\frac{75}{2}.
x=\frac{-6+2\sqrt{4191}i}{-75}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{4191}i}{-75} ina he tāpiri te ±. Tāpiri -6 ki te 2i\sqrt{4191}.
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Whakawehe -6+2i\sqrt{4191} ki te -75.
x=\frac{-2\sqrt{4191}i-6}{-75}
Nā, me whakaoti te whārite x=\frac{-6±2\sqrt{4191}i}{-75} ina he tango te ±. Tango 2i\sqrt{4191} mai i -6.
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Whakawehe -6-2i\sqrt{4191} ki te -75.
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25} x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Kua oti te whārite te whakatau.
112=6x-\frac{75}{2}x^{2}
Whakareatia te \frac{1}{2} ki te 75, ka \frac{75}{2}.
6x-\frac{75}{2}x^{2}=112
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{75}{2}x^{2}+6x=112
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{75}{2}x^{2}+6x}{-\frac{75}{2}}=\frac{112}{-\frac{75}{2}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{75}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{6}{-\frac{75}{2}}x=\frac{112}{-\frac{75}{2}}
Mā te whakawehe ki te -\frac{75}{2} ka wetekia te whakareanga ki te -\frac{75}{2}.
x^{2}-\frac{4}{25}x=\frac{112}{-\frac{75}{2}}
Whakawehe 6 ki te -\frac{75}{2} mā te whakarea 6 ki te tau huripoki o -\frac{75}{2}.
x^{2}-\frac{4}{25}x=-\frac{224}{75}
Whakawehe 112 ki te -\frac{75}{2} mā te whakarea 112 ki te tau huripoki o -\frac{75}{2}.
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=-\frac{224}{75}+\left(-\frac{2}{25}\right)^{2}
Whakawehea te -\frac{4}{25}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{25}. Nā, tāpiria te pūrua o te -\frac{2}{25} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{25}x+\frac{4}{625}=-\frac{224}{75}+\frac{4}{625}
Pūruatia -\frac{2}{25} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{25}x+\frac{4}{625}=-\frac{5588}{1875}
Tāpiri -\frac{224}{75} ki te \frac{4}{625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{25}\right)^{2}=-\frac{5588}{1875}
Tauwehea x^{2}-\frac{4}{25}x+\frac{4}{625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{-\frac{5588}{1875}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{25}=\frac{2\sqrt{4191}i}{75} x-\frac{2}{25}=-\frac{2\sqrt{4191}i}{75}
Whakarūnātia.
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25} x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Me tāpiri \frac{2}{25} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}