Whakaoti mō y
y=0.2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
11.2 \left( 5y-1 \right) +3 \left( 13.4-7y \right) = 36
Tohaina
Kua tāruatia ki te papatopenga
56y-11.2+3\left(13.4-7y\right)=36
Whakamahia te āhuatanga tohatoha hei whakarea te 11.2 ki te 5y-1.
56y-11.2+40.2-21y=36
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 13.4-7y.
56y+29-21y=36
Tāpirihia te -11.2 ki te 40.2, ka 29.
35y+29=36
Pahekotia te 56y me -21y, ka 35y.
35y=36-29
Tangohia te 29 mai i ngā taha e rua.
35y=7
Tangohia te 29 i te 36, ka 7.
y=\frac{7}{35}
Whakawehea ngā taha e rua ki te 35.
y=\frac{1}{5}
Whakahekea te hautanga \frac{7}{35} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}