Aromātai
1.2
Tauwehe
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{11.2\times 3}{9\times 3+1}
Whakawehe 11.2 ki te \frac{9\times 3+1}{3} mā te whakarea 11.2 ki te tau huripoki o \frac{9\times 3+1}{3}.
\frac{33.6}{9\times 3+1}
Whakareatia te 11.2 ki te 3, ka 33.6.
\frac{33.6}{27+1}
Whakareatia te 9 ki te 3, ka 27.
\frac{33.6}{28}
Tāpirihia te 27 ki te 1, ka 28.
\frac{336}{280}
Whakarohaina te \frac{33.6}{28} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{6}{5}
Whakahekea te hautanga \frac{336}{280} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 56.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}