Whakaoti mō x (complex solution)
x=\frac{-\sqrt{390}i+10}{49}\approx 0.204081633-0.403028932i
x=\frac{10+\sqrt{390}i}{49}\approx 0.204081633+0.403028932i
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+20x-49x^{2}=11
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1+20x-49x^{2}-11=0
Tangohia te 11 mai i ngā taha e rua.
-10+20x-49x^{2}=0
Tangohia te 11 i te 1, ka -10.
-49x^{2}+20x-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20±\sqrt{20^{2}-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -49 mō a, 20 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-49\right)\left(-10\right)}}{2\left(-49\right)}
Pūrua 20.
x=\frac{-20±\sqrt{400+196\left(-10\right)}}{2\left(-49\right)}
Whakareatia -4 ki te -49.
x=\frac{-20±\sqrt{400-1960}}{2\left(-49\right)}
Whakareatia 196 ki te -10.
x=\frac{-20±\sqrt{-1560}}{2\left(-49\right)}
Tāpiri 400 ki te -1960.
x=\frac{-20±2\sqrt{390}i}{2\left(-49\right)}
Tuhia te pūtakerua o te -1560.
x=\frac{-20±2\sqrt{390}i}{-98}
Whakareatia 2 ki te -49.
x=\frac{-20+2\sqrt{390}i}{-98}
Nā, me whakaoti te whārite x=\frac{-20±2\sqrt{390}i}{-98} ina he tāpiri te ±. Tāpiri -20 ki te 2i\sqrt{390}.
x=\frac{-\sqrt{390}i+10}{49}
Whakawehe -20+2i\sqrt{390} ki te -98.
x=\frac{-2\sqrt{390}i-20}{-98}
Nā, me whakaoti te whārite x=\frac{-20±2\sqrt{390}i}{-98} ina he tango te ±. Tango 2i\sqrt{390} mai i -20.
x=\frac{10+\sqrt{390}i}{49}
Whakawehe -20-2i\sqrt{390} ki te -98.
x=\frac{-\sqrt{390}i+10}{49} x=\frac{10+\sqrt{390}i}{49}
Kua oti te whārite te whakatau.
1+20x-49x^{2}=11
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
20x-49x^{2}=11-1
Tangohia te 1 mai i ngā taha e rua.
20x-49x^{2}=10
Tangohia te 1 i te 11, ka 10.
-49x^{2}+20x=10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-49x^{2}+20x}{-49}=\frac{10}{-49}
Whakawehea ngā taha e rua ki te -49.
x^{2}+\frac{20}{-49}x=\frac{10}{-49}
Mā te whakawehe ki te -49 ka wetekia te whakareanga ki te -49.
x^{2}-\frac{20}{49}x=\frac{10}{-49}
Whakawehe 20 ki te -49.
x^{2}-\frac{20}{49}x=-\frac{10}{49}
Whakawehe 10 ki te -49.
x^{2}-\frac{20}{49}x+\left(-\frac{10}{49}\right)^{2}=-\frac{10}{49}+\left(-\frac{10}{49}\right)^{2}
Whakawehea te -\frac{20}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{10}{49}. Nā, tāpiria te pūrua o te -\frac{10}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{20}{49}x+\frac{100}{2401}=-\frac{10}{49}+\frac{100}{2401}
Pūruatia -\frac{10}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{20}{49}x+\frac{100}{2401}=-\frac{390}{2401}
Tāpiri -\frac{10}{49} ki te \frac{100}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{10}{49}\right)^{2}=-\frac{390}{2401}
Tauwehea x^{2}-\frac{20}{49}x+\frac{100}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{49}\right)^{2}}=\sqrt{-\frac{390}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{10}{49}=\frac{\sqrt{390}i}{49} x-\frac{10}{49}=-\frac{\sqrt{390}i}{49}
Whakarūnātia.
x=\frac{10+\sqrt{390}i}{49} x=\frac{-\sqrt{390}i+10}{49}
Me tāpiri \frac{10}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}