Whakaoti mō y
y=4
y=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
11y-3y^{2}=-4
Tangohia te 3y^{2} mai i ngā taha e rua.
11y-3y^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
-3y^{2}+11y+4=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=11 ab=-3\times 4=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3y^{2}+ay+by+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=12 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(-3y^{2}+12y\right)+\left(-y+4\right)
Tuhia anō te -3y^{2}+11y+4 hei \left(-3y^{2}+12y\right)+\left(-y+4\right).
3y\left(-y+4\right)-y+4
Whakatauwehea atu 3y i te -3y^{2}+12y.
\left(-y+4\right)\left(3y+1\right)
Whakatauwehea atu te kīanga pātahi -y+4 mā te whakamahi i te āhuatanga tātai tohatoha.
y=4 y=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te -y+4=0 me te 3y+1=0.
11y-3y^{2}=-4
Tangohia te 3y^{2} mai i ngā taha e rua.
11y-3y^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
-3y^{2}+11y+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-11±\sqrt{11^{2}-4\left(-3\right)\times 4}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 11 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-11±\sqrt{121-4\left(-3\right)\times 4}}{2\left(-3\right)}
Pūrua 11.
y=\frac{-11±\sqrt{121+12\times 4}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
y=\frac{-11±\sqrt{121+48}}{2\left(-3\right)}
Whakareatia 12 ki te 4.
y=\frac{-11±\sqrt{169}}{2\left(-3\right)}
Tāpiri 121 ki te 48.
y=\frac{-11±13}{2\left(-3\right)}
Tuhia te pūtakerua o te 169.
y=\frac{-11±13}{-6}
Whakareatia 2 ki te -3.
y=\frac{2}{-6}
Nā, me whakaoti te whārite y=\frac{-11±13}{-6} ina he tāpiri te ±. Tāpiri -11 ki te 13.
y=-\frac{1}{3}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=-\frac{24}{-6}
Nā, me whakaoti te whārite y=\frac{-11±13}{-6} ina he tango te ±. Tango 13 mai i -11.
y=4
Whakawehe -24 ki te -6.
y=-\frac{1}{3} y=4
Kua oti te whārite te whakatau.
11y-3y^{2}=-4
Tangohia te 3y^{2} mai i ngā taha e rua.
-3y^{2}+11y=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3y^{2}+11y}{-3}=-\frac{4}{-3}
Whakawehea ngā taha e rua ki te -3.
y^{2}+\frac{11}{-3}y=-\frac{4}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
y^{2}-\frac{11}{3}y=-\frac{4}{-3}
Whakawehe 11 ki te -3.
y^{2}-\frac{11}{3}y=\frac{4}{3}
Whakawehe -4 ki te -3.
y^{2}-\frac{11}{3}y+\left(-\frac{11}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{11}{6}\right)^{2}
Whakawehea te -\frac{11}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{6}. Nā, tāpiria te pūrua o te -\frac{11}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{11}{3}y+\frac{121}{36}=\frac{4}{3}+\frac{121}{36}
Pūruatia -\frac{11}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{11}{3}y+\frac{121}{36}=\frac{169}{36}
Tāpiri \frac{4}{3} ki te \frac{121}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{11}{6}\right)^{2}=\frac{169}{36}
Tauwehea y^{2}-\frac{11}{3}y+\frac{121}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{11}{6}=\frac{13}{6} y-\frac{11}{6}=-\frac{13}{6}
Whakarūnātia.
y=4 y=-\frac{1}{3}
Me tāpiri \frac{11}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}