Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-122 ab=11\times 11=121
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 11x^{2}+ax+bx+11. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-121 -11,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 121.
-1-121=-122 -11-11=-22
Tātaihia te tapeke mō ia takirua.
a=-121 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -122.
\left(11x^{2}-121x\right)+\left(-x+11\right)
Tuhia anō te 11x^{2}-122x+11 hei \left(11x^{2}-121x\right)+\left(-x+11\right).
11x\left(x-11\right)-\left(x-11\right)
Tauwehea te 11x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-11\right)\left(11x-1\right)
Whakatauwehea atu te kīanga pātahi x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
11x^{2}-122x+11=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-122\right)±\sqrt{\left(-122\right)^{2}-4\times 11\times 11}}{2\times 11}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-122\right)±\sqrt{14884-4\times 11\times 11}}{2\times 11}
Pūrua -122.
x=\frac{-\left(-122\right)±\sqrt{14884-44\times 11}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-\left(-122\right)±\sqrt{14884-484}}{2\times 11}
Whakareatia -44 ki te 11.
x=\frac{-\left(-122\right)±\sqrt{14400}}{2\times 11}
Tāpiri 14884 ki te -484.
x=\frac{-\left(-122\right)±120}{2\times 11}
Tuhia te pūtakerua o te 14400.
x=\frac{122±120}{2\times 11}
Ko te tauaro o -122 ko 122.
x=\frac{122±120}{22}
Whakareatia 2 ki te 11.
x=\frac{242}{22}
Nā, me whakaoti te whārite x=\frac{122±120}{22} ina he tāpiri te ±. Tāpiri 122 ki te 120.
x=11
Whakawehe 242 ki te 22.
x=\frac{2}{22}
Nā, me whakaoti te whārite x=\frac{122±120}{22} ina he tango te ±. Tango 120 mai i 122.
x=\frac{1}{11}
Whakahekea te hautanga \frac{2}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
11x^{2}-122x+11=11\left(x-11\right)\left(x-\frac{1}{11}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 11 mō te x_{1} me te \frac{1}{11} mō te x_{2}.
11x^{2}-122x+11=11\left(x-11\right)\times \frac{11x-1}{11}
Tango \frac{1}{11} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
11x^{2}-122x+11=\left(x-11\right)\left(11x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 11 i roto i te 11 me te 11.