Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=2 ab=11\left(-9\right)=-99
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 11x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,99 -3,33 -9,11
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -99.
-1+99=98 -3+33=30 -9+11=2
Tātaihia te tapeke mō ia takirua.
a=-9 b=11
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(11x^{2}-9x\right)+\left(11x-9\right)
Tuhia anō te 11x^{2}+2x-9 hei \left(11x^{2}-9x\right)+\left(11x-9\right).
x\left(11x-9\right)+11x-9
Whakatauwehea atu x i te 11x^{2}-9x.
\left(11x-9\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 11x-9 mā te whakamahi i te āhuatanga tātai tohatoha.
11x^{2}+2x-9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 11\left(-9\right)}}{2\times 11}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{4-4\times 11\left(-9\right)}}{2\times 11}
Pūrua 2.
x=\frac{-2±\sqrt{4-44\left(-9\right)}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-2±\sqrt{4+396}}{2\times 11}
Whakareatia -44 ki te -9.
x=\frac{-2±\sqrt{400}}{2\times 11}
Tāpiri 4 ki te 396.
x=\frac{-2±20}{2\times 11}
Tuhia te pūtakerua o te 400.
x=\frac{-2±20}{22}
Whakareatia 2 ki te 11.
x=\frac{18}{22}
Nā, me whakaoti te whārite x=\frac{-2±20}{22} ina he tāpiri te ±. Tāpiri -2 ki te 20.
x=\frac{9}{11}
Whakahekea te hautanga \frac{18}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{22}{22}
Nā, me whakaoti te whārite x=\frac{-2±20}{22} ina he tango te ±. Tango 20 mai i -2.
x=-1
Whakawehe -22 ki te 22.
11x^{2}+2x-9=11\left(x-\frac{9}{11}\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{9}{11} mō te x_{1} me te -1 mō te x_{2}.
11x^{2}+2x-9=11\left(x-\frac{9}{11}\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
11x^{2}+2x-9=11\times \frac{11x-9}{11}\left(x+1\right)
Tango \frac{9}{11} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
11x^{2}+2x-9=\left(11x-9\right)\left(x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 11 i roto i te 11 me te 11.