Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11=-10t^{2}+44t+30
Whakareatia te 11 ki te 1, ka 11.
-10t^{2}+44t+30=11
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-10t^{2}+44t+30-11=0
Tangohia te 11 mai i ngā taha e rua.
-10t^{2}+44t+19=0
Tangohia te 11 i te 30, ka 19.
t=\frac{-44±\sqrt{44^{2}-4\left(-10\right)\times 19}}{2\left(-10\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -10 mō a, 44 mō b, me 19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-44±\sqrt{1936-4\left(-10\right)\times 19}}{2\left(-10\right)}
Pūrua 44.
t=\frac{-44±\sqrt{1936+40\times 19}}{2\left(-10\right)}
Whakareatia -4 ki te -10.
t=\frac{-44±\sqrt{1936+760}}{2\left(-10\right)}
Whakareatia 40 ki te 19.
t=\frac{-44±\sqrt{2696}}{2\left(-10\right)}
Tāpiri 1936 ki te 760.
t=\frac{-44±2\sqrt{674}}{2\left(-10\right)}
Tuhia te pūtakerua o te 2696.
t=\frac{-44±2\sqrt{674}}{-20}
Whakareatia 2 ki te -10.
t=\frac{2\sqrt{674}-44}{-20}
Nā, me whakaoti te whārite t=\frac{-44±2\sqrt{674}}{-20} ina he tāpiri te ±. Tāpiri -44 ki te 2\sqrt{674}.
t=-\frac{\sqrt{674}}{10}+\frac{11}{5}
Whakawehe -44+2\sqrt{674} ki te -20.
t=\frac{-2\sqrt{674}-44}{-20}
Nā, me whakaoti te whārite t=\frac{-44±2\sqrt{674}}{-20} ina he tango te ±. Tango 2\sqrt{674} mai i -44.
t=\frac{\sqrt{674}}{10}+\frac{11}{5}
Whakawehe -44-2\sqrt{674} ki te -20.
t=-\frac{\sqrt{674}}{10}+\frac{11}{5} t=\frac{\sqrt{674}}{10}+\frac{11}{5}
Kua oti te whārite te whakatau.
11=-10t^{2}+44t+30
Whakareatia te 11 ki te 1, ka 11.
-10t^{2}+44t+30=11
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-10t^{2}+44t=11-30
Tangohia te 30 mai i ngā taha e rua.
-10t^{2}+44t=-19
Tangohia te 30 i te 11, ka -19.
\frac{-10t^{2}+44t}{-10}=-\frac{19}{-10}
Whakawehea ngā taha e rua ki te -10.
t^{2}+\frac{44}{-10}t=-\frac{19}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
t^{2}-\frac{22}{5}t=-\frac{19}{-10}
Whakahekea te hautanga \frac{44}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t^{2}-\frac{22}{5}t=\frac{19}{10}
Whakawehe -19 ki te -10.
t^{2}-\frac{22}{5}t+\left(-\frac{11}{5}\right)^{2}=\frac{19}{10}+\left(-\frac{11}{5}\right)^{2}
Whakawehea te -\frac{22}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{5}. Nā, tāpiria te pūrua o te -\frac{11}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{22}{5}t+\frac{121}{25}=\frac{19}{10}+\frac{121}{25}
Pūruatia -\frac{11}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{22}{5}t+\frac{121}{25}=\frac{337}{50}
Tāpiri \frac{19}{10} ki te \frac{121}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{11}{5}\right)^{2}=\frac{337}{50}
Tauwehea t^{2}-\frac{22}{5}t+\frac{121}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{11}{5}\right)^{2}}=\sqrt{\frac{337}{50}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{11}{5}=\frac{\sqrt{674}}{10} t-\frac{11}{5}=-\frac{\sqrt{674}}{10}
Whakarūnātia.
t=\frac{\sqrt{674}}{10}+\frac{11}{5} t=-\frac{\sqrt{674}}{10}+\frac{11}{5}
Me tāpiri \frac{11}{5} ki ngā taha e rua o te whārite.