Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11x^{2}-54x-192=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 11\left(-192\right)}}{2\times 11}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 11\left(-192\right)}}{2\times 11}
Pūrua -54.
x=\frac{-\left(-54\right)±\sqrt{2916-44\left(-192\right)}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-\left(-54\right)±\sqrt{2916+8448}}{2\times 11}
Whakareatia -44 ki te -192.
x=\frac{-\left(-54\right)±\sqrt{11364}}{2\times 11}
Tāpiri 2916 ki te 8448.
x=\frac{-\left(-54\right)±2\sqrt{2841}}{2\times 11}
Tuhia te pūtakerua o te 11364.
x=\frac{54±2\sqrt{2841}}{2\times 11}
Ko te tauaro o -54 ko 54.
x=\frac{54±2\sqrt{2841}}{22}
Whakareatia 2 ki te 11.
x=\frac{2\sqrt{2841}+54}{22}
Nā, me whakaoti te whārite x=\frac{54±2\sqrt{2841}}{22} ina he tāpiri te ±. Tāpiri 54 ki te 2\sqrt{2841}.
x=\frac{\sqrt{2841}+27}{11}
Whakawehe 54+2\sqrt{2841} ki te 22.
x=\frac{54-2\sqrt{2841}}{22}
Nā, me whakaoti te whārite x=\frac{54±2\sqrt{2841}}{22} ina he tango te ±. Tango 2\sqrt{2841} mai i 54.
x=\frac{27-\sqrt{2841}}{11}
Whakawehe 54-2\sqrt{2841} ki te 22.
11x^{2}-54x-192=11\left(x-\frac{\sqrt{2841}+27}{11}\right)\left(x-\frac{27-\sqrt{2841}}{11}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{27+\sqrt{2841}}{11} mō te x_{1} me te \frac{27-\sqrt{2841}}{11} mō te x_{2}.