Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11x^{2}+4x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{4^{2}-4\times 11\left(-2\right)}}{2\times 11}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 11 mō a, 4 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 11\left(-2\right)}}{2\times 11}
Pūrua 4.
x=\frac{-4±\sqrt{16-44\left(-2\right)}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-4±\sqrt{16+88}}{2\times 11}
Whakareatia -44 ki te -2.
x=\frac{-4±\sqrt{104}}{2\times 11}
Tāpiri 16 ki te 88.
x=\frac{-4±2\sqrt{26}}{2\times 11}
Tuhia te pūtakerua o te 104.
x=\frac{-4±2\sqrt{26}}{22}
Whakareatia 2 ki te 11.
x=\frac{2\sqrt{26}-4}{22}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{26}}{22} ina he tāpiri te ±. Tāpiri -4 ki te 2\sqrt{26}.
x=\frac{\sqrt{26}-2}{11}
Whakawehe -4+2\sqrt{26} ki te 22.
x=\frac{-2\sqrt{26}-4}{22}
Nā, me whakaoti te whārite x=\frac{-4±2\sqrt{26}}{22} ina he tango te ±. Tango 2\sqrt{26} mai i -4.
x=\frac{-\sqrt{26}-2}{11}
Whakawehe -4-2\sqrt{26} ki te 22.
x=\frac{\sqrt{26}-2}{11} x=\frac{-\sqrt{26}-2}{11}
Kua oti te whārite te whakatau.
11x^{2}+4x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
11x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
11x^{2}+4x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
11x^{2}+4x=2
Tango -2 mai i 0.
\frac{11x^{2}+4x}{11}=\frac{2}{11}
Whakawehea ngā taha e rua ki te 11.
x^{2}+\frac{4}{11}x=\frac{2}{11}
Mā te whakawehe ki te 11 ka wetekia te whakareanga ki te 11.
x^{2}+\frac{4}{11}x+\left(\frac{2}{11}\right)^{2}=\frac{2}{11}+\left(\frac{2}{11}\right)^{2}
Whakawehea te \frac{4}{11}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{11}. Nā, tāpiria te pūrua o te \frac{2}{11} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{11}x+\frac{4}{121}=\frac{2}{11}+\frac{4}{121}
Pūruatia \frac{2}{11} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{11}x+\frac{4}{121}=\frac{26}{121}
Tāpiri \frac{2}{11} ki te \frac{4}{121} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{11}\right)^{2}=\frac{26}{121}
Tauwehea x^{2}+\frac{4}{11}x+\frac{4}{121}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{11}\right)^{2}}=\sqrt{\frac{26}{121}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{11}=\frac{\sqrt{26}}{11} x+\frac{2}{11}=-\frac{\sqrt{26}}{11}
Whakarūnātia.
x=\frac{\sqrt{26}-2}{11} x=\frac{-\sqrt{26}-2}{11}
Me tango \frac{2}{11} mai i ngā taha e rua o te whārite.