Tauwehe
\left(11x-14\right)\left(x+14\right)
Aromātai
\left(11x-14\right)\left(x+14\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=140 ab=11\left(-196\right)=-2156
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 11x^{2}+ax+bx-196. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,2156 -2,1078 -4,539 -7,308 -11,196 -14,154 -22,98 -28,77 -44,49
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -2156.
-1+2156=2155 -2+1078=1076 -4+539=535 -7+308=301 -11+196=185 -14+154=140 -22+98=76 -28+77=49 -44+49=5
Tātaihia te tapeke mō ia takirua.
a=-14 b=154
Ko te otinga te takirua ka hoatu i te tapeke 140.
\left(11x^{2}-14x\right)+\left(154x-196\right)
Tuhia anō te 11x^{2}+140x-196 hei \left(11x^{2}-14x\right)+\left(154x-196\right).
x\left(11x-14\right)+14\left(11x-14\right)
Tauwehea te x i te tuatahi me te 14 i te rōpū tuarua.
\left(11x-14\right)\left(x+14\right)
Whakatauwehea atu te kīanga pātahi 11x-14 mā te whakamahi i te āhuatanga tātai tohatoha.
11x^{2}+140x-196=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-140±\sqrt{140^{2}-4\times 11\left(-196\right)}}{2\times 11}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-140±\sqrt{19600-4\times 11\left(-196\right)}}{2\times 11}
Pūrua 140.
x=\frac{-140±\sqrt{19600-44\left(-196\right)}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-140±\sqrt{19600+8624}}{2\times 11}
Whakareatia -44 ki te -196.
x=\frac{-140±\sqrt{28224}}{2\times 11}
Tāpiri 19600 ki te 8624.
x=\frac{-140±168}{2\times 11}
Tuhia te pūtakerua o te 28224.
x=\frac{-140±168}{22}
Whakareatia 2 ki te 11.
x=\frac{28}{22}
Nā, me whakaoti te whārite x=\frac{-140±168}{22} ina he tāpiri te ±. Tāpiri -140 ki te 168.
x=\frac{14}{11}
Whakahekea te hautanga \frac{28}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{308}{22}
Nā, me whakaoti te whārite x=\frac{-140±168}{22} ina he tango te ±. Tango 168 mai i -140.
x=-14
Whakawehe -308 ki te 22.
11x^{2}+140x-196=11\left(x-\frac{14}{11}\right)\left(x-\left(-14\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{14}{11} mō te x_{1} me te -14 mō te x_{2}.
11x^{2}+140x-196=11\left(x-\frac{14}{11}\right)\left(x+14\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
11x^{2}+140x-196=11\times \frac{11x-14}{11}\left(x+14\right)
Tango \frac{14}{11} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
11x^{2}+140x-196=\left(11x-14\right)\left(x+14\right)
Whakakorea atu te tauwehe pūnoa nui rawa 11 i roto i te 11 me te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}