Aromātai
\frac{27921}{101}\approx 276.445544554
Tauwehe
\frac{3 \cdot 41 \cdot 227}{101} = 276\frac{45}{101} = 276.44554455445547
Tohaina
Kua tāruatia ki te papatopenga
275+\frac{\frac{11^{2}}{1111}\left(25+11^{2}\right)}{11}
Whakareatia te 11 ki te 25, ka 275.
275+\frac{\frac{121}{1111}\left(25+11^{2}\right)}{11}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
275+\frac{\frac{11}{101}\left(25+11^{2}\right)}{11}
Whakahekea te hautanga \frac{121}{1111} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
275+\frac{\frac{11}{101}\left(25+121\right)}{11}
Tātaihia te 11 mā te pū o 2, kia riro ko 121.
275+\frac{\frac{11}{101}\times 146}{11}
Tāpirihia te 25 ki te 121, ka 146.
275+\frac{\frac{11\times 146}{101}}{11}
Tuhia te \frac{11}{101}\times 146 hei hautanga kotahi.
275+\frac{\frac{1606}{101}}{11}
Whakareatia te 11 ki te 146, ka 1606.
275+\frac{1606}{101\times 11}
Tuhia te \frac{\frac{1606}{101}}{11} hei hautanga kotahi.
275+\frac{1606}{1111}
Whakareatia te 101 ki te 11, ka 1111.
275+\frac{146}{101}
Whakahekea te hautanga \frac{1606}{1111} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{27775}{101}+\frac{146}{101}
Me tahuri te 275 ki te hautau \frac{27775}{101}.
\frac{27775+146}{101}
Tā te mea he rite te tauraro o \frac{27775}{101} me \frac{146}{101}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{27921}{101}
Tāpirihia te 27775 ki te 146, ka 27921.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}