Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(55x^{2}+82x-4)
Whakareatia te 11 ki te 5, ka 55.
55x^{2}+82x-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-82±\sqrt{82^{2}-4\times 55\left(-4\right)}}{2\times 55}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-82±\sqrt{6724-4\times 55\left(-4\right)}}{2\times 55}
Pūrua 82.
x=\frac{-82±\sqrt{6724-220\left(-4\right)}}{2\times 55}
Whakareatia -4 ki te 55.
x=\frac{-82±\sqrt{6724+880}}{2\times 55}
Whakareatia -220 ki te -4.
x=\frac{-82±\sqrt{7604}}{2\times 55}
Tāpiri 6724 ki te 880.
x=\frac{-82±2\sqrt{1901}}{2\times 55}
Tuhia te pūtakerua o te 7604.
x=\frac{-82±2\sqrt{1901}}{110}
Whakareatia 2 ki te 55.
x=\frac{2\sqrt{1901}-82}{110}
Nā, me whakaoti te whārite x=\frac{-82±2\sqrt{1901}}{110} ina he tāpiri te ±. Tāpiri -82 ki te 2\sqrt{1901}.
x=\frac{\sqrt{1901}-41}{55}
Whakawehe -82+2\sqrt{1901} ki te 110.
x=\frac{-2\sqrt{1901}-82}{110}
Nā, me whakaoti te whārite x=\frac{-82±2\sqrt{1901}}{110} ina he tango te ±. Tango 2\sqrt{1901} mai i -82.
x=\frac{-\sqrt{1901}-41}{55}
Whakawehe -82-2\sqrt{1901} ki te 110.
55x^{2}+82x-4=55\left(x-\frac{\sqrt{1901}-41}{55}\right)\left(x-\frac{-\sqrt{1901}-41}{55}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-41+\sqrt{1901}}{55} mō te x_{1} me te \frac{-41-\sqrt{1901}}{55} mō te x_{2}.
55x^{2}+82x-4
Whakareatia te 11 ki te 5, ka 55.