Whakaoti mō r
r=1
Tohaina
Kua tāruatia ki te papatopenga
11+4r=24r-6-3r
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 8r-2.
11+4r=21r-6
Pahekotia te 24r me -3r, ka 21r.
11+4r-21r=-6
Tangohia te 21r mai i ngā taha e rua.
11-17r=-6
Pahekotia te 4r me -21r, ka -17r.
-17r=-6-11
Tangohia te 11 mai i ngā taha e rua.
-17r=-17
Tangohia te 11 i te -6, ka -17.
r=\frac{-17}{-17}
Whakawehea ngā taha e rua ki te -17.
r=1
Whakawehea te -17 ki te -17, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}