Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m^{2}+12m+11
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=12 ab=1\times 11=11
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei m^{2}+am+bm+11. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(m^{2}+m\right)+\left(11m+11\right)
Tuhia anō te m^{2}+12m+11 hei \left(m^{2}+m\right)+\left(11m+11\right).
m\left(m+1\right)+11\left(m+1\right)
Tauwehea te m i te tuatahi me te 11 i te rōpū tuarua.
\left(m+1\right)\left(m+11\right)
Whakatauwehea atu te kīanga pātahi m+1 mā te whakamahi i te āhuatanga tātai tohatoha.
m^{2}+12m+11=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-12±\sqrt{12^{2}-4\times 11}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-12±\sqrt{144-4\times 11}}{2}
Pūrua 12.
m=\frac{-12±\sqrt{144-44}}{2}
Whakareatia -4 ki te 11.
m=\frac{-12±\sqrt{100}}{2}
Tāpiri 144 ki te -44.
m=\frac{-12±10}{2}
Tuhia te pūtakerua o te 100.
m=-\frac{2}{2}
Nā, me whakaoti te whārite m=\frac{-12±10}{2} ina he tāpiri te ±. Tāpiri -12 ki te 10.
m=-1
Whakawehe -2 ki te 2.
m=-\frac{22}{2}
Nā, me whakaoti te whārite m=\frac{-12±10}{2} ina he tango te ±. Tango 10 mai i -12.
m=-11
Whakawehe -22 ki te 2.
m^{2}+12m+11=\left(m-\left(-1\right)\right)\left(m-\left(-11\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -11 mō te x_{2}.
m^{2}+12m+11=\left(m+1\right)\left(m+11\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.