Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

10800seg\times \frac{h}{3600seg}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{10800h}{3600seg}seg
Tuhia te 10800\times \frac{h}{3600seg} hei hautanga kotahi.
\frac{3h}{egs}seg
Me whakakore tahi te 3600 i te taurunga me te tauraro.
\frac{3hs}{egs}eg
Tuhia te \frac{3h}{egs}s hei hautanga kotahi.
\frac{3h}{eg}eg
Me whakakore tahi te s i te taurunga me te tauraro.
\frac{3he}{eg}g
Tuhia te \frac{3h}{eg}e hei hautanga kotahi.
\frac{3h}{g}g
Me whakakore tahi te e i te taurunga me te tauraro.
3h
Me whakakore te g me te g.
\frac{\mathrm{d}}{\mathrm{d}h}(10800seg\times \frac{h}{3600seg})
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{10800h}{3600seg}seg)
Tuhia te 10800\times \frac{h}{3600seg} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3h}{egs}seg)
Me whakakore tahi te 3600 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3hs}{egs}eg)
Tuhia te \frac{3h}{egs}s hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3h}{eg}eg)
Me whakakore tahi te s i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3he}{eg}g)
Tuhia te \frac{3h}{eg}e hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{3h}{g}g)
Me whakakore tahi te e i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}h}(3h)
Me whakakore te g me te g.
3h^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
3h^{0}
Tango 1 mai i 1.
3\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
3
Mō tētahi kupu t, t\times 1=t me 1t=t.