Aromātai
75
Tauwehe
3\times 5^{2}
Tohaina
Kua tāruatia ki te papatopenga
108\left(\frac{8}{12}-\frac{9}{12}+\frac{7}{9}\right)
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{2}{3} me \frac{3}{4} ki te hautau me te tautūnga 12.
108\left(\frac{8-9}{12}+\frac{7}{9}\right)
Tā te mea he rite te tauraro o \frac{8}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
108\left(-\frac{1}{12}+\frac{7}{9}\right)
Tangohia te 9 i te 8, ka -1.
108\left(-\frac{3}{36}+\frac{28}{36}\right)
Ko te maha noa iti rawa atu o 12 me 9 ko 36. Me tahuri -\frac{1}{12} me \frac{7}{9} ki te hautau me te tautūnga 36.
108\times \frac{-3+28}{36}
Tā te mea he rite te tauraro o -\frac{3}{36} me \frac{28}{36}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
108\times \frac{25}{36}
Tāpirihia te -3 ki te 28, ka 25.
\frac{108\times 25}{36}
Tuhia te 108\times \frac{25}{36} hei hautanga kotahi.
\frac{2700}{36}
Whakareatia te 108 ki te 25, ka 2700.
75
Whakawehea te 2700 ki te 36, kia riro ko 75.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}